Search results for "Naphthaleneacetic Acids"

showing 2 items of 2 documents

Systematic analysis of specific and nonspecific auxin effects on endocytosis and trafficking.

2021

Abstract The phytohormone auxin and its directional transport through tissues are intensively studied. However, a mechanistic understanding of auxin-mediated feedback on endocytosis and polar distribution of PIN auxin transporters remains limited due to contradictory observations and interpretations. Here, we used state-of-the-art methods to reexamine the auxin effects on PIN endocytic trafficking. We used high auxin concentrations or longer treatments versus lower concentrations and shorter treatments of natural indole-3-acetic acid (IAA) and synthetic naphthalene acetic acid (NAA) auxins to distinguish between specific and nonspecific effects. Longer treatments of both auxins interfere wi…

0106 biological sciencesPhysiologyEndocytic cycleArabidopsisBREFELDIN-APlant Science01 natural sciencesPROTEIN TRAFFICKINGNaphthaleneacetic AcidsPlant Growth RegulatorsGOLGI-APPARATUSheterocyclic compoundsInternalizationResearch Articlesmedia_commonchemistry.chemical_classification0303 health sciencesAcademicSubjects/SCI01270biologyAcademicSubjects/SCI02288AcademicSubjects/SCI02287AcademicSubjects/SCI02286food and beveragesCorrigendaEndocytosisCell biologyProtein TransportMEMBRANE TRAFFICKINGIntracellulartrans-Golgi NetworkGNOM ARF-GEFAcademicSubjects/SCI01280media_common.quotation_subjectEndocytosisClathrin03 medical and health sciencesAuxinGeneticsEndomembrane systemVACUOLAR TRAFFICKINGPLANT030304 developmental biologyIndoleacetic AcidsArabidopsis ProteinsMEDIATES ENDOCYTOSISCell MembraneBiology and Life SciencesTransporterTRANSPORTchemistrybiology.proteinARABIDOPSIS-THALIANA010606 plant biology & botanyPlant physiology
researchProduct

Micropropagation of juvenile and adult Sorbus domestica L.

1991

Successful propagation of seedlings and mature trees of Sorbus domestica L. has been achieved by in vitro methods. Multiple shoot formation was obtained by placing shoot apices or nodal segments on a modified Schenck and Hildebrandt medium containing benzyladenine. Regenerated shoots were excised and induced to root on media with auxin. In the best treatments 75–85% of shoots from juvenile material rooted. Rooting capacity of shoots from mature explants was lower (30%) and was not improved by dipping the base of shoots in concentration solutions of indolebutyric or naphthaleneacetic acids. Plantlets were ultimately established in soil.

chemistry.chemical_classificationSorbus domesticaRosaceaefungifood and beveragesHorticultureBiologybiology.organism_classificationNaphthaleneacetic AcidsMicropropagationchemistryAuxinShootBotanyJuvenileExplant culturePlant Cell, Tissue and Organ Culture
researchProduct